Savukaasupesuri parantaa lämpöyhtiön kannattavuutta

Savukaasupesuriteknologian käytölle on useita perusteluja. Yksi merkittävimmistä on sen tuoma liiketaloudellinen hyöty, sillä lämpölaitosten savupiipuista katoaa taivaalle edelleen suunnaton määrä hyödynnettävissä olevaa lämpöenergiaa.

Savukaasupesuri, joka sisältää savukaasujen pesun lisäksi lämmön talteenoton ja likaisen lauhteen puhdistuksen.

Savukaasupesuri, joka sisältää savukaasujen pesun lisäksi lämmön talteenoton ja likaisen lauhteen puhdistuksen.

Kaukolämpömarkkinoiden muutokset Euroopassa asettavat useat lämpölaitosyhtiöt haasteelliseen asemaan. Muutosten taustalla olevat syyt ovat moninaiset. Kilpailu lämpöasiakkaista on koventunut huomattavasti viimeisten kymmenen vuoden aikana vaihtoehtoisten lämmitysmuotojen yleistyessä. Eri maiden kaukolämmöntuotannon polttoainestrategiat ovat sidoksissa EU:n ja koko globaalin maailmantalouden energiavarantojen ja -tuotannon muutoksiin.

Kaukolämpöverkot ovat usein iäkkäitä ja kuluttajapään lämmönvaihtimet sekä niiden hyötysuhteet huonoja. Lisäksi tuotantolaitosten uudistaminen vastaamaan nykyajan energiatehokkuus- ja päästövaatimuksia on usein kiinni kuntien taloustilanteesta, mikä voi viivästyttää tai jopa estää taloudellisesti ja ympäristöllisesti järkevien investointien läpiviennin.

Katseet kaukolämmöntuotannon uudistamiseksi on suunnattava taloudellisesti järkeviin, riittävän pienimuotoisiin investointihankkeisiin, joilla pyritään erityisesti nostamaan lämmöntuotannon energiatehokkuutta sekä rajoittamaan laitosten päästöt kustannustehokkaasti nykyvaatimusten tasolle. Moderni savukaasupesuri ottaa talteen hukkalämmön ja lämpöyhtiöt saavat kaupan päälle hiukkasten tehokkaan suodatuksen.

Polttoöljy lämpöyhtiöiden taloudellisena taakkana

Suuri osa lämpölaitosyhtiöistä käyttää edelleen polttoaineena myös raskasta polttoöljyä. Polttoöljyä kuluu erityisesti kovilla pakkasjaksoilla, kun päätuotantolaitoksen kapasiteetti ei riitä. Useissa tapauksissa lisälämmöntarve on merkittävä ja johtaa jo lyhyiden pakkasjaksojen aikana huomattavaan polttoöljyn kulutukseen.

Kokemuksemme mukaan tyypillinen polttoöljyllä tuotettu energiamäärä on 3500 - 6000 MWh vuodessa lämpöyhtiöissä, joiden KPA-laitokset ovat kokoluokkaa 5-10 MW. Pääosa öljystä kuluu talven pakkasjaksoilla. Tämän lisäksi raskaalla polttoöljyllä paikataan KPA-kattilan seisokki- ja huoltoajat. Kesäaikana KPA-laitokset toimivat säätöalueensa alarajoilla, jolloin laitoksen operointi on vaikeaa. Tarvittava kaukolämpö tuotetaan tällöin usein öljy- tai maakaasukattiloilla.

Lämpölaitosyhtiöt pyrkivät eroon raskaan polttoöljyn käytöstä. Syyt ovat liiketaloudellisesti ja yhteiskunnallisesti järkeviä; raskaan polttoöljyn käyttö polttoaineena on liian kallista ja hiilidioksidipäästöt huomattavasti korkeammat kuin esimerkiksi paikallisilla biopolttoaineilla toimittaessa.

Lämpöpumpulla varustellun pesurin laskennallinen vaikutus erään lämpölaitoksen lämmöntuotannon pysyvyyskäyrään.

Lämpöpumpulla varustellun pesurin laskennallinen vaikutus erään lämpölaitoksen lämmöntuotannon pysyvyyskäyrään.

Savukaasujen puhdistus ja hukkalämmön talteenotto

Savukaasupesuri on niin kutsuttu märkäpesuri, jonka kehitystyön tavoite oli savukaasujen hiukkaspäästöjen vähentäminen. Nyt painopiste on siirtynyt yhä enemmän savukaasuissa olevan hukkalämmön talteenoton tehostamiseen.

Perinteisen savukaasupesurin hiukkaspäästöjen suodatus sekä lämmön talteenotto perustuvat kahteen peräkkäiseen prosessointivaiheeseen. Savukaasut johdetaan pesuvaiheeseen, jossa poistetaan pääosa pienhiukkasista. Samassa vaiheessa savukaasut jäähtyvät niin sanottuun märkälämpötilaansa (60 - 70 astetta) saakka. Pesuvaiheen jälkeen savukaasut johdetaan lauhduttimeen, jossa savukaasu luovuttaa lämpöenergiansa pääasiassa lauhtumalla vastavirtaan valuvaan kiertoveteen. Lauhtuminen tapahtuu täytekappalekerroksissa (yksi tai kaksi kerrosta), jotka toimivat prosessin lämmönsiirtopintoina. Kiertovesi, joka on muodostunutta lauhdetta, johdetaan lämmönvaihtimelle.

Lämmönvaihtimella lauhteeseen siirtynyt lämpöenergia otetaan talteen kaukolämpöveteen kuvan 2 mukaisesti.

Oleellisinta on saavuttaa kastepistelämpötila lauhdutinvyöhykkeessä

Lauhteen lämpöenergia siirretään lämmönvaihtimella kaukolämpöveteen.

Lauhteen lämpöenergia siirretään lämmönvaihtimella kaukolämpöveteen.

Kastepiste on lämpötila, jossa savukaasun sisältämän vesihöyryn suhteellinen kosteus on 100 prosenttia. Jos lämpötila laskee kastepisteen alapuolelle, alkaa savukaasussa oleva vesihöyry tiivistyä eli muuttua vedeksi. Tarkasteltaessa lämpöenergian siirtymistä huomataan, että veden eri faasimuutosten yhteydessä entalpiamuutokset ovat huomattavasti suuremmat kuin yhden faasin sisällä tapahtuvissa lämpötilamuutoksissa. Niinpä esimerkiksi veden höyrystymisessä ja vesihöyryn tiivistymisessä lämpöenergian siirtymät ovat merkittäviä (2350 kJ/kg).

Pesurin lämmön talteenoton kannalta oleellisinta on juuri tuon kastepistelämpötilan alittuminen, jolloin savukaasujen vesihöyry tiivistyy ja vapautuva lämpöenergia pääsee siirtymään tehokkaasti kiertoveteen ja sitä kautta lämmönvaihtimeen. Jos pesurissa jäädään huomattavasti kastepistelämpötilan yläpuolelle, lämmön talteenottokyky romahtaa ja pesuri alkaa toimia pahimmillaan haihduttimena. Pesurissa siis höyrystetään lisävettä savukaasuihin. (kuva 3)

Miksi normaali savukaasupesuri ei toimi kovilla pakkasilla?

Kastepistelämpötilan saavuttaminen tilanteessa kuin tilanteessa on pesurin lämmön talteenoton toiminnan kannalta oleellista. Pesurin lämmönsiirtimien toisiopuolelle johdetaan kaukolämmön paluuvesi, joka jäähdyttää savukaasut alle veden kastepistelämpötilan. Jäähdytys toimii ja kastepiste saavutetaan, kun kaukolämpöverkon paluuveden lämpötila pysyy selkeästi savukaasun kastepistelämpötilan alapuolella.

Huipputehon aikaan pyritään usein käyttämään laadullisesti hyvää eli kuivaa polttoainetta. Kuivan polttoaineen savukaasut ovat kuivia, eli savukaasujen kastepistelämpötila on matala. Huippukuorman aikana usein myös kaukolämpöverkkojen paluulämpötilat nousevat. Suurin syyllinen löytyy kotitalouksissa käytettävistä kaukolämmönvaihtimista, joiden hyötysuhteet ovat heikot. Ne eivät yksinkertaisesti pysty siirtämään tarvittavaa lämpömäärää kotitalouksiin, vaan ylimääräinen lämpö kiertää takaisin lämpölaitokselle.

Kun tämä ylijäämälämpö syötetään takaisin savukaasupesurin lämmönvaihtimiin, ei kastepistelämpötilaa saavuteta ja lämmön talteenotto huononee merkittävästi. Voidaan puhua jopa pesurin LTO-kyvyn romahtamisesta. Puuttuva lauhtuminen johtaa helposti myös pesurin liete- ja tukkeumaongelmiin.

Lämpöpumppukytkennällä merkittäviä parannuksia lämmön talteenottoon

Lämpöpumppuja on käytetty teollisuudessa jo vuosikymmeniä erilaisissa hukkalämmön talteenottoprosesseissa. Lämpölaitosprosessi on erikoistapaus, jossa oikealla lämpöpumppukytkennällä saadaan talteenottoa tehostettua jopa 4-8 -kertaiseksi perinteiseen pesuriin verrattuna.

Lämpöpumpulla säädetään pesurille menevää kaukolämpöveden paluulämpötilaa siten, että kastepistelämpötila saavutetaan riippumatta verkon kuormitusasteesta. Perinteisessä pesurissa kaukolämmön paluulämpötila rajoittaa savukaasujen loppulämpötilan noin 3-5 °C paluulämpötilaa korkeammalle tasolle. Esimerkiksi jos paluulämpötila on 55 °C, savukaasujen minimi loppulämpötila voi olla 58 °C. Lämpöpumppukytkennällä kaukolämmön paluulämpötilaa voidaan alentaa jopa 20 °C alemmalle lämpötilatasolle, eli edellistä esimerkkiä noudattaen kaukolämpöveden paluulämpötila olisi 35 °C ja savukaasujen minimiloppuloppulämpötila 38 °C. Jäähdytys ei kuitenkaan hukkaa paluuvedessä olevaa lämpöenergiaa, vaan se siirtyy pumpun termoaineen välityksellä lauhduttimelle ja takaisin kaukolämpöverkkoon. Lämpöpumpulla siirretty energia ainoastaan ohittaa pesurikytkennän. Kehittyneimmissä sovelluksissa verkon paluuvettä johdetaan jäähdytykseen ainoastaan pesurin todellisuudessa tarvitsema määrä, jolloin lämpöpumpun koko voidaan mitoittaa investoinnin kannalta optimaaliseksi.

Veden höyrystymisessä ja vesihöyryn tiivistymisessä lämpöenergian siirtymät ovat merkittäviä.

Veden höyrystymisessä ja vesihöyryn tiivistymisessä lämpöenergian siirtymät ovat merkittäviä.

Edellä esitetyssä esimerkissä 20 asteen lisäjäähdytys on merkittävä energian talteenoton kannalta. Mikäli esimerkkitapauksen polttoaineena käytettäisiin turvetta, jonka kosteus on 35 prosenttia ja savukaasujen happipitoisuus 5 tilavuusprosenttia, savukaasujen kastepistelämpötila olisi 57 °C. Silloin perinteisellä pesurilla ei saavutettaisi kastepistelämpötilaa vaan prosessissa tarvittaisiin lisävettä.

Edellä selostettu säätöpiiri ja lämpöpumpun kytkemistapa mahdollistavat pesurin lämmön talteenoton merkittävän noston ja lämpölaitoksen energiatehokkuuden parannuksen erityisesti kovilla pakkasjaksoilla. Raskaan polttoöljyn käyttöä voidaan merkittävästi vähentää, mikä takaa lyhyen takaisinmaksuajan investoinnille. Tähän mennessä on saavutettu 2,5-3 vuoden takaisinmaksuaikoja investoinneissa, joissa raskas polttoöljy on korvattu lämpöpumppukytkentäisellä pesuriratkaisulla.

Caligo Industria Oy

Caligo Industria Oy:n järjestelmä edustaa edellä selostettua uusinta savukaasupesuriteknologiaa, jossa hyödynnetään yhtiön patentoimaa lämpöpumppukytkentää. Järjestelmää tarjotaan toimintavalmiina kokonaisuutena, joka sisältää kaikki pesurissa tarvittavat ominaisuudet savukaasujen pesusta lämmön talteenottoon ja likaisen lauhteen puhdistukseen. Toimitus sisältää itsenäisen automaatiojärjestelmän tarvittavine ohjauksineen sekä säätöineen ja järjestelmä on lähes huoltovapaa. Vakioyksikkö on mitoitettavissa 3 MW laitoskokoluokasta aina 30 MW laitoskokoluokkaan asti.

Juha Järvenreuna

Juha Järvenreuna,

Caligo Industria Oy,

juha.jarvenreuna@caligoindustria.com

Uusimmat artikkelit

3.6.2020 | Alan Uutiset

BASF rakentaa akkujen arvoketjua Harjavallasta Saksaan

Maailman suurimpiin kemikaaliyhtiöihin kuuluva saksalainen BASF rakentaa Suomen ja Saksan kautta EU:n komission tavoitteiden mukaista akkutuotannon kestävää kehitystä. Harjavallan ja Schwarzheiden laitokset tuottavat yhdessä akkumateriaalia 400 000 sähköauton tarpeisiin. Suomeen tulee yli sata uutta työpaikkaa.

Koronavirusta Helsingin ja Turun jätevesissä, mutta ei muissa viikkoseurantakohteissa

Helsingin ja Turun jätevesistä on löytynyt koronavirusta, selviää THL:n jätevesitutkimuksesta. Sen sijaan Tampereella, Kuopiossa ja Oulussa kerätyistä näytteistä ei ole löytynyt viitteitä viruksesta. 

29.5.2020 | Tutkimus ja koulutus

Rakentajat tehostavat kosteudenhallintaa verkkokoulutuksella

Neljätoista Suomen suurinta rakennusliikettä on yhdessä kehittänyt eKosteus-koulutuksen ja alkaa hyödyntää sitä oman henkilöstönsä koulutukseen. Tavoitteena on parantaa kosteudenhallinnan osaamista sekä torjua kosteusvaurioita. Koulutus kokoaa yhteen perustiedot, jotka rakentamisen kaikkien osapuolten tulee tuntea, jotta kuivaketju ei katkea. Asiasta raportoi Rakennusteollisuus RT ry.

29.5.2020 | Kumppaniartikkeli

Viafin Service jatkaa yrityskaupan jälkeen kasvu-uralla

Teollisuuden kunnossapitoa tarjoava Viafin Service Oyj on vuoden ajan sulatellut suurta kaasualan käyttö- ja kunnossapitopalveluihin liittyvää yrityskauppaa. Nyt Viafin GASiksi nimetyn yhtiön hankinta on saatettu onnistuneesti päätökseen ja listautunut emoyhtiö voi jatkaa matkaa kohti seuraavaa tavoitetta. Päämääränä on nousta sadan miljoonan euron liikevaihtoa pyörittäväksi teollisuuden kunnossapitoyhtiöksi vuoden 2022 aikana.

Myös maatalouskoneiden huoltokirjaukset hoituvat mobiilisti

Maatalouskoneiden huollot merkitään yleisimmin paperiseen huoltovihkoon. Työtehoseuran keväällä tekemän kyselyn mukaan vain seitsemän prosenttia vastaajista käytti sähköistä huoltokirjaa, yleisimmin Exceliä. Tutkimus osoitti, että mobiilisti käytettävälle huoltokirjalle olisi kysyntää. Nyt sellainen löytyy TTS-Koneesta ja on käytettävissä kaikille käyttöoikeuden lunastaneille.

Kestävillä teräksillä pidennetään työvälineiden käyttöikää, säästetään materiaalia

Uddeholms Ab on ruotsalainen työkaluteräsvalmistaja, joka kuuluu itävaltalaiseen voestalpine-teräskonserniin. 

20 prosenttia Kajaanin kaukolämmöstä: CSC ja Loiste Lämpö allekirjoittivat sopimuksen

Loiste Lämpö ja CSC – Tieteen tietotekniikan keskus ovat allekirjoittaneet sopimuksen LUMI-supertietokoneelle rakennettavan datakeskuksen kaukolämpöliittymän rakentamisesta ja hukkalämmön hyödyntämisestä. Sopimuksen mukaan vuoden 2021 alussa käynnistyvä datakeskus kerää talteen toimintansa sivutuotteena syntyvän lämmön, jonka Loiste Lämpö siirtää verkkoonsa lämmittämään kajaanilaisia koteja ja liiketiloja.